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ABSTRACT

A grayscale digital picture is called "connected" if it
has only one connected component of constant gray level that
is maximal, i.e., not adjacent to any component of higher
gray level. This note establishes some equivalent conditions
for connectedness, and also defines a grayscale generalization
of the genus in terms of sums of local property values.
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1. Introduction

Some of the basic topological properties of subsets of

a digital picture [1] were generalized in [2] to fuzzy sub-

sets, i.e., to the case where the picture is multi-valued

rather than two-valued. The purpose of this note is to pre-

sent some additional results on the fuzzy case. In particular,

some equivalent characterizations of fuzzy connectedness are

established, and a generalization of the genus to the fuzzy

case is proposed. A special class of digital pictures is

defined for which these concepts have relatively simple inter-

pretations.

jIn studying topological properties in the case where

points have only two values (0 and 1), it is customary to use

opposite types of connectedness for the two types of points,

regarding diagonal neighbors as adjacent for the l's but not

for the O's, or vice versa. For multivalued pictures the

situation becomes more complicated, since there are many types

of points. To avoid complications, we will deal primarily

with pictures defined on a hexagonal grid, where a point has

only one kind of neighbor.

Section 2 summarizes the basic concepts of digital topology'

that are needed in this paper, and also discusses the relation-

ship of multivalued digital pictures with fuzzy sets. Section 3

establishes some equivalent conditions for fuzzy connectedness;
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Section 4 defines "coherent" digital pictures and gives a

connectedness criterion in the coherent case; and Section 5

discusses fuzzy genus.
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2. Background

Let Z be a bounded regular grid of points in the plane.

We will assume in most of this paper that the grid is hexa-

gonal rather than Cartesian, so that each point of Z has

six neighbors. Let S be any subset of Z, which we assume

does not meet the border of E. We say that two points P,Q

of S are connected in S if there exists a path P=P0,P',...,

Pn=Q of points of S such that Pi is a neighbor of Pi- 1 l:-5n.

"Connected" is an equivalence relation, and its equivalence

classes are called the connected components of S; if there is

only one component, we call S connected. The complement

of S also consists of connected components. One of these,

called the background, contains the border of E; the others,

if any, are called holes in S.

Let a be a fuzzy subset of E, i.e., a mapping from Z

into [0,1]. For any PEE, we call a(P) the degree of member-

ship of P in a. A subset SaZ can be regarded as a fuzzy sub-

set in which a is into {0,1}, and S is the preimage of 1.

The fuzzy subset 1-a is called the complement of a.

Since Z is finite, a takes on only finitely many values

on Z. We are only interested in the relative size of these

values, and can thus assume them to be rational numbers; hence

there exists an a such that all these values are integer multi-

ples of a. From now on we will regard a as taking on integer

values (dividing the original rational values by a), so that

a defines a digital picture on Z whose gray level at P is

! ,/



a(P)/z:g(P), where O~g(P)5M (say). We assume that a has

value 0 on the border of E.

A digital picture a can be decomposed into connected

components C of constant gray level - i.e., for some gray

level X, C is a connected component of the set a of points

having gray level 1. C is called a top if the components

adjacent to C all have lower gray level than C; a bottom

is defined analogously. Evidently, for any point P, there

is a rinotonically nondescending (nonascending) path to a

top (bottom). The gray level of a component C will be

denoted by CI.

In [1) we defined a to be connected if for all P,Q in

Z there exists a path P=PoP,...,Pn=Q such that eacha(P )min

(a(P),a(Q)), and we proved that a is connected iff a has a

unique top. We will now establish some equivalent characteri-

zations of connectedness.



3. Connectedness

For any Oit M, the set of points that have gray level Z

will be denoted by oa' and the set of points that have gray

levels >X will be denoted by a,+. For brevity, a connected

component of a. will be called an Z-component, and a con-

nected component of a,+ will be called an + -component.
+

Proposition 1. Any nonempty Z -component contains a top.

Proof: From any P in the component there is a monotonically

nondescending path to a top, and this path evidently lies

in the component. 11

Theorem 2. The following properties of a are all equivalent:

a) a has a unique top

b) For all Z, a,+ is connected

c) Every i-component is adjacent to at most one Z +-component

Proof: If some a&+ had two components, each of them would

contain a top by Proposition 1, and these tops must be diS-

tinct; hence (a) implies (b), while (b) trivially implies (c).

To see that (c) implies (a), suppose that a had two tops U,V,

and consider a sequence of components U=C 01C1 ,"...,Cn=V such

that Ci is adjacent to C 1 1, lnin. Of all such sequences,

pick one for which minIC i = is as large as possible, and of

all these, pick one for which the value Z is taken on as few

times as possible. Let ICji s; then evidently 0<j<n. If
+

Cj_ 1 and Cj+ 1 were in the same X -component, the sequence

could be diverted to avoid Cj by passing through a succession



of components of values >X; the diverted sequence would thus

have fewer terms of value Z, contradiction. Hence C. isJ

adjacent to two 2 +-components, which completes the proof.

Note that an £-component is adjacent to no k.+-components iff

it is a top. II

As in (1], if a has the properties of Theorem 2, it is called

connected. Note that by (b), a is connected iff all its "level

sets" are connected in the nonfuzzy sense. If we define aX_

and Z--component in the obvious way, using gray levels <Z, we

have an analogous result with "+" replaced by -" and "top"

by "bottom"; if a has these properties, it is called hole-free.

If a is both connected and hole-free, we call it simply

connected.

It follows immediately from Proposition 1 that for any 2,

if a,+ has k components, a must have at least k tops of

heights >2. Thus if a has k tops, every a,+ has at most k

components. It may be, however, that every a,+ has strictly

fewer than k components; thus for k>l we have no good generali-

zation of the equivalence between (a) and (b) in Theorem 1.

We recall [31 that a is called convex if for all P,Q in

, there exists a digital straight line segment p from P to

Q such that for all R on p we have a(R)?min(a(P),a(Q)). It

is easily seen that if a is convex, it must be simply connected.

Indeed, if a had two tops, say with values IUHnIVI, a line

segment between points of these tops would have to pass through



a point of value <(UJ adjacent to U. Similarly, if a had

a bottom B, other than the one containing the border of a,

there would exist points of value >IBI adjacent to B such

that any line segment joining them would pass through B.

Evidently, a is convex iff a,+ is convex for all X. We are

ignoring here the special problems involved in defining con-

vexity on a discrete grid; see, e.g., [3].
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4. Coherence

Any component C has an outer border along which it is

adjacent to a component of C that surrounds it; and it may

also have hole borders along which it is adjacent to com-

ponents of C that it surrounds. In the two-valued case,

if C is a component of (e.g.) l's, there is in fact just one

component of O's adjacent to C along each of these borders;

but in the multivalued case, many different L-components (for

various X's) may be adjacent to C along each of its borders,

the only restriction being that these components must have

values different from that of C.

we call a coherent if, for any component C, exactly one

component is adjacent to C along each of its borders. This

seems like a very strong requirement, but it turns out to be

satisfied whenever a is obtained by digitizing a bandlimited

function f (of two variables) by sampling it sufficiently

finely. Indeed, if f is bandlimited, the magnitude of its

gradient is bounded; thus we can find a 6 such that, e.g.,

for any two points P,Q within distance 6 apart we have

If(P)-f(Q)t<l. If we sample f using a grid finer than 6,

and quantize the result to integer values, then in the result-

ing digital picture g, any pair of neighboring points differ

in value by at most 1. For such a g, suppose that two com-

ponents of different values are adjacent to the Z-component

C along the same border; then these values can only be Z+l

and Z-1. Moreover, at some point of the border these

!I
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components must meet, and we then have neighboring points

that differ in value by 2, contradiction. Thus, g is co-

herent, and has the further property that adjacent components

always differ in value by 1.

Note that if a is coherent, any component C separates any

two components that are adjacent to it. It follows that the

adjacency graph of the components of a has no cycles, hence

is a tree, just as in the two-valued case.

Proposition 3. Let a have the property that, along any of

its borders, any C meets components that are either all high-

er or all lower than it in value; then a is coherent.

Proof: Suppose C met D,E along the same border, where

1CJ<IDI<JEI; then along this border two such components must

meet each other, so that the lower-valued one (say D) meets

components having both lower and higher values (C and E)

along one of its borders, contradiction. 11

Proposition 4. If a is coherent, the conditions of Theorem 2

are also equivalent to

d) Every i-component is adjacent to at most one Z'-component

such that '>£.

Proof: If C is adjacent to two Z -components, let P',P" be

points of these components that are adjacent to C; then P',P"

have values ',Z" >Z, so that C is adjacent to two components

of values >Z. Thus (d) implies (c) without assuming coherence.

Conversely, if a is coherent and C is adjacent to two components

of values >Z, it must be adjacent to them along different borders;

1t



hence they belong to different Z+-components (since they are

contained in different components of C), which proves that

(c) implies (d). Note that an i-component is adjacent to

no Z'-component with £'>£ iff it is a top. Note also that

a component that has no holes is adjacent to only one other

component, and so must be either a top or a bottom. 1l

If a is convex, then any C, along any of its hole borders,

can only meet components that are all higher than it in value.

However, along its outer border, C can meet comronents that have

both higher and lower values; e.g., the digital picture

1 2 (surrounded by 0's)

is convex. Thus a convex a need not be coherent (compare

Proposition 3).

,i
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5. Genus

In the two-valued case, the genus G is defined as the

number of components (of l's) minus the number of holes

(nonbackground components of O's). It can be shown [4]

that G=I(I-II), where I is the number of triples of mutu-

ally adjacent points exactly one of which is 1, while II

is the number of such triples of points exactly two of

which are l's. For example, if there is only a single

isolated 1, there are six I's and no II's, so that the

genus is 1. As another example, consider the two-valued

picture

1 1

1 1

1 1

where the blanks are O's; here there are 12 I's and 12 II's,

so that the genus is 0.

One way of interpreting this formula for the genus is to

regard I's as convex corners (of the set of l's) and II's as

concave corners:

(In __ and

0 1



the dot indicates the position of the corner.) On the outer

border of a component of l's, there must be six more convex

corners than concave corners, since the two types of corners

represent 600 turns in opposite directions, and the net turn

around the border must be 3600. Similarly, on a hole border,

which is the outer border of a nonbackground component of O's,

there must be six more concave corners than convex ones.

Hence each component of l's contributes 1 (= 1-6) to the for-
6

mula, and each nonbackground component of O's contributes

-1, so that the formula does compute the genus.

We can generalize this formula to the multivalued case

by considering all triples of mutually adjacent points, two

of which have equal value. Let a be the value of the two

equal points, and b the value of the third point; then the

contribution of the triple is b-a. Readily, this reduces to

the standard formula if the picture is two-valued.

If a is coherent, any component C meets only one other

component D along each of its borders, and it becomes easy

to see what each border contributes to the generalized for-

mula. Indeed, any border, if the surrounding component has

value a and the surrounded component has value b, the contri-

bution is b-a; note that this is positive if b>a (so that the

border is the outer border of the higher-valued component),

and negative if b<a (a hole border). Now since a is coherent,

the components form a directed tree, rooted at the background,



under the relationships of adjacency and surroundedness.

Let the arc strength between a father and a son on this tree

be b-a, where a is the father's value and b is the son's.

Then the genus of a is just the sum of these arc strengths.

For example, suppose a consists of a set of tops of

values ti, all adjacent to the background; then the genus of

a is Zti, the sum of the top heights. Suppose a is simply

connected, so that it consists of a nested set of components

of increasing value O<a<... <an; then the genus of a is

(a1-0)+(a 2-a)+...+(an-an)=an, the height of a's top. In

more general cases, however, the genus represents only the

values of the components of a relative to their surrounds,

not their absolute values; for example, if there is a compo-

nent of value v adjacent to the background, and a set of n

tops of values ti all surrounded by this component, the

genus is E(ti-v)+(v-O)=Zti-(n-l)v. Note that if a component

contains a set of holes, it still makes a positive contribution

to the genus unless the sum of the relative depths of the

holes exceeds its height relative to its surround.

. ..... .. m .. ..... ..... .... . .... Ill ......... . .. . . |li l . .. .. . .. . . . . .. . . ....-- -"-... .. . .. . ... ..-- - -,---. . . . .



6. Concluding remarks

This note has established some equivalent conditions for

gray scale "connectedness", and has defined a grayscale

generalization of the genus which relates global properties

of the relative component heights to local properties summed

over certain corners where triples of (hexagonal) pixels meet.

It has introduced the notion of a "coherent" digital pic-

ture, and shown that the theory of these properties becomes

much simpler in the coherent case.

f,
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